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Summary

1. Spatially clustered populations create unique challenges for conservation monitoring programmes. Advances

in methodology typically are focused on either the design or the modelling stage of the study but do not involve

integration of both.

2. We integrate adaptive cluster sampling and spatial occupancy modelling by developing two models to handle

the dependence induced by cluster sampling. We compare these models to scenarios using simple random sam-

pling and traditional occupancy models via simulation and data collected on a rare plant species, Tamarix ramo-

sissima, found in China.

3. Our simulations show a marked improvement in confidence interval coverage for the new models combined

with cluster sampling compared to simple random sampling and traditional occupancy models, with greatest

improvement in the presence of low detection probability and spatial correlation in occupancy.

4. Accounting for the design using the simple cluster random-effects model reduces bias considerably, and full

spatial modelling reduces bias further, especially for large n when the spatial covariance parameters can be esti-

mated reliably. Both new models build on the strength of occupancy modelling and adaptive sampling and per-

form at least as well, and often better, than occupancymodelling alone.

5. We believe our approach is unique and potentially useful for a variety of studies directed at patchily dis-

tributed, clustered or rare species exhibiting spatial variation.

Key-words: adaptive cluster sampling, informative sampling, probit regression, rare species, spatial

regression,Tamarix ramosissima

Introduction

Monitoring state variables such as animal abundance, density

or site occupancy rate is a critical component of many large-

scale and long-term conservation efforts. Unfortunately, this

information can be challenging to obtain due to limited finan-

cial resources and logistical constraints imposed by complex

environmental and geographic conditions (Possingham et al.

2001). These problems are exacerbated when the species of

interest is patchily distributed, occurs in low numbers or is diffi-

cult to observe or capture (Thompson 2004; MacKenzie et al.

2005; Martin et al. 2014). These characteristics, possessed by

many rare or elusive species, create unique challenges for both

the design and analysis of surveys (Thompson 2004; Cunning-

ham & Lindenmayer 2005; MacKenzie et al. 2005; Pacifici,

Dorazio&Conroy 2012).

Recent advances in methodology have focused on either

improving sampling design or developing sophisticated data

analysis. Several approaches have been proposed that tailor

data collection to profit from a specific behaviour or character-

istic of the species of interest. For instance, the use of designs

such as stratified sampling (Edwards et al. 2005), sequential

sampling (Thompson 2002, 2004), multiphase sampling

(Thompson 2002, 2004; Pacifici, Dorazio & Conroy 2012) or

adaptive sampling (Thompson 1990, 2004; Brown et al. 2013)

can potentially increase the information content in a particular

sample as well as provide more efficient estimation by account-

ing for spatial structure in species distributions.

Other approaches have been developed to increase the flexi-

bility of estimation models. Recent advancements add model

complexity to account for deficiencies in the design or data.

For example, site occupancy models (MacKenzie et al. 2002;

Tyre et al. 2003; Bailey, MacKenzie & Nichols 2014) can now

account for lack of independence among observations col-

lected on trails or transects (Hines et al. 2010; Aing et al. 2011;

Guillera-Arroita et al. 2011, 2012) and spatial autocorrelation

(Hoeting, Leecaster & Bowden 2000; Hooten, Larsen &Wikle

2003; Royle & Dorazio 2008; Gardner et al. 2010; Johnson

et al. 2013). Other approaches have been developed to permit

inference at multiple spatial scales (Nichols et al. 2008), or to

leverage information across different species (MacKenzie et al.

2005; Alldredge et al. 2007), or community characteristics

(Dorazio et al. 2006; Zipkin, DeWan & Royle 2009; Dorazio,

Gotelli &Ellison 2011; Pacifici et al. 2014).*Correspondence author. E-mail: jkpacifi@ncsu.edu
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Although a focus on either the design ormodelling stage can

be useful, ideally both should be considered to maximize the

quality of information collected and rigour of inference (e.g.

Johnson, Laake & Ver Hoef 2010). This was recognized early

on by Thompson (Adaptive cluster sampling; 1990) and

MacKenzie et al. (occupancy modelling; 2006), but has not

seen much attention in the literature. The dual focus on apply-

ing advanced designs and modelling techniques should, theo-

retically, be most beneficial in cases where one technique is not

sufficient due to a major impediment. For example, the reason

to resort to more sophisticated designs is often to ensure suffi-

cient data collection even for simple analyses, especially for

species that are rare, hard to detect, or exhibit strong spatial

correlation (Pacifici, Dorazio & Conroy 2012). Conversely, a

major impediment to fitting more complicated models is a lack

of data forcing researchers to focus on simpler study objectives

andmodels.

MacKenzie et al. (2006) and Thompson (1990) both recog-

nized that allocating more effort in areas conditional on a pre-

vious detection (augmenting the sample design) can potentially

increase the performance of the estimators. They describe but

did not develop a scenario that would require the combination

of occupancy estimation (MacKenzie et al. 2006) and adaptive

cluster sampling (Thompson 1990) and point out the potential

advantages of such an approach. MacKenzie & Royle (2005)

also suggested the possibility of selecting sites by adaptive sam-

pling leading to reliable inference about occupancy probability

although they did not develop the model in detail. Conroy

et al. (2008) presented an approach that relied on detections to

augment the sample with additional information in the form of

capture–recapture. Rapley&Welsh (2008) developed amodel-

based approach for adaptive cluster sampling that includes the

benefits of both approaches, but does not incorporate esti-

mates of detection probability or measurement error therefore

making reliable inference difficult. Peyrard et al. (2013) also

addressed spatial adaptive sampling, but were more concerned

in reconstructing a spatial map of the system and not estimat-

ing potential covariates that influence the spatial distribution

of a species.

In this paper, we develop a statistically rigorous approach

that integrates adaptive cluster sampling with a spatially expli-

cit occupancy analysis. The adaptive cluster sample begins with

a simple random sample and is followed by a second stage of

additional sampling in areas that are occupied in the first stage.

Inclusion of the second stage should increase the precision of

species distribution maps in occupied patches and provide

information about local spatial variation in occupancy to

improve inference via spatial analysis. We develop two models

based on data collected in an adaptivemanner: a computation-

ally demanding spatial model based on a latent continuous

spatial process and a simpler version with shared random

effects. Our adaptive sampling scheme for rare species is

designed to put more sampling effort in areas likely to be occu-

pied, however, we show that by analysing data using our pro-

posed spatial model, we avoid bias that may occur due to

preferential sampling. We evaluate our approach using both

simulated and real data and find that the proposed sampling

and analysis method is more powerful than simple random

sampling for rare species with low detection rates.

Materials andMethods

ADAPTIVE SAMPLING SCHEME

The sampling begins with J sampling occasions at each of n spatial

locations selected randomly from the spatial domain of interest.

Denote si1 and Yi1 2 {0, . . ., J} as the spatial location and number of

detections, respectively, for sampling site i = 1,. . ., n. Additional sam-

pling effort is dedicated to areas near locations si1 with detections

Yi1 > 0. For each location with a detection, an additional ki � 1 sites

si2; . . .; siki near si1 are surveyed, again with J sampling occasions at

each site. Note that each selected sample location is surveyed the same

number of times, even if the same location is selected more than once

by adaptive cluster sampling. We allocate each site to the first cluster it

is assigned to and resolve any issues with individual sites appearing in

multiple clusters. This process could be repeated further, but for sim-

plicity we consider only a two-stage sampling design.

There are several potential ways to draw the second-stage site loca-

tions. We partition the spatial domain into a fine rectangular grid of

cells, sample n cells in the first stage, and then the four rook neighbours

(neighbours to the north, east, south and west) of occupied sites in the

second stage (with each cell attributed to at most one cluster). Another

possibility is to randomly sample second-stage sites within a certain

radius of the sites that were occupied in the first stage. It is also not

required that J sampling occasions be dedicated to each sampling site,

but we assume this for simplicity.

STATIST ICAL MODEL

We use a state-space approach in which we express the model by its

two component processes: a sub-model for the latent occupancy state

and a sub-model for the observations conditional on the latent occu-

pancy state. The true occupancy state isZij, where Zij = 1 indicates the

site is occupied and Zij = 0 indicates the site is not occupied for

i = 1,. . ., n initial sites and j = 2, . . ., 5 second-stage sites (here we only

look at the four rooks neighbouring sites). Conditioned on the occu-

pancy state the observations aremodelled as

YijjZij;P�BinomialðJ; pZijÞ eqn 1

where P is the conditional probability of detection at an occupied site.

Thus, if a site is occupied, then the data are binomial with J trials and

success probability P, otherwise Prob Yij ¼ 0
� � ¼ 1. We assume the

detection probability is constant, although it can be modelled using

site-level or replicate-level covariates (MacKenzie et al. 2002).We con-

sider both a spatial and non-spatial model for the occupancy statesZij,

as described below.

SPATIAL OCCUPANCY MODEL

We assume that there is a latent continuous spatial process Vij so that

the site is occupied (Zij = 1) if Vij > 0, and the site is not occupied

(Z = 0) ifVij ≤ 0. The latent continuous process is modelled as aGaus-

sian process with mean dependent on covariates Xij, E Vij

� � ¼ XT
ij b,

variance Var(Vij) = 1 and spatial correlation Cor(Vij, Vuv) =

M ksij � suvk
� �

, where (‖sij � suv‖ is the distance between the sites

and M is the Matern correlation function (Cressie 1993). The Matern

correlation function has two parameters: g > 0 controls the smooth-

ness of V, and q > 0 controls the range of spatial dependence. Under

© 2015 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society,
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this model, the occupancy probability at site sij has the usual probit

regression form UðXT
ij bÞ, where U is the standard normal distribution

function (see Dorazio & Rodr�ıguez 2012; for an application of occu-

pancy modelling with probit regression). We use a probit link because

updating the latent parameters can be made with standard Gibbs sam-

pling and this avoids having to select tuning parameters for these

updating steps (Johnson et al. 2013; Data S1). Predictions at unsam-

pled locations are made using standard Bayesian kriging methods as

described in the supplement.

RANDOM-EFFECTS OCCUPANCY MODEL

In addition to the spatial model for the latent occupancy indicators, we

use a simplermodel which accounts for dependence between sites in the

same sampling cluster using a shared random effect. In this model, the

latent process ismodelled as

Vij ¼ XT
ij bþ bi þ eij eqn 2

where the cluster random effects are bi � Normal(0, r2) and

ɛij � Normal(0, 1), both independent over i and j. To illustrate how

the shared random effect accounts for dependence within a cluster, we

observe that the correlation betweenVij andVuv is zero if they are from

different clusters (i 6¼ u) and r2/(r2 + 1) if the observations are from

the same cluster (i = u). Therefore, when r2 is small, all observations

are independent, and whenr2 is large, observations within a cluster are

highly correlated. The motivation for this dependence structure is that

the random effects can account for local dependence within a cluster.

Unlike the spatial model, nearby clusters are assumed to be indepen-

dent, which may be reasonable if the clusters are sufficiently separated.

For prediction at unsampled locations, we treat each cell as its own

cluster and draw bi and Vij from (2). We note that other clustering

schemes are possible for the unsampled locations, but clustering does

not affect themarginal occupancy probability.

INFORMATIVE SAMPLING

Our sampling scheme is geared towards increasing sampling effort in

areas likely to be occupied. The subsequent statistical analysis then

requires care to ensure estimates are not biased by informative sam-

pling (Diggle,Menezes & Su 2010; Pati, Reich&Dunson 2011). Below,

we argue that because site selection is completely determined by

observed data and not unknown parameters, the statistical model does

not need to account for informative sampling.We use bracket notation

(Gelfand & Smith 1990) to specify probability density functions; thus,

[x, y] denotes the joint density of random variables X and Y, [x|y]

denotes the conditional density of X given Y = y, and [x] denotes the

unconditional (marginal) density ofX.

Let h be the collection of unknown parameters including the true

occupancy status of each spatial location, detection probability, regres-

sion coefficients and spatial correlation parameters. The sampling has

two stages. Denote s1 as the initial set of n locations sampled, and s2 as

the second set of locations sampled in clusters around sites with positive

results. At these two sets of sampling locations, data y1 and y2 are col-

lected. The preferential sampling literature (Diggle, Menezes & Su

2010) handles informative sampling by treating the location of samples

s1 and s2 as randomvariables. The entire posterior is then

hjs1; s2; y1; y2½ � / s1; s2; y1; y2jh½ � h½ �;
where s1; s2; y1; y2jh½ � is the likelihood of the data given the parameters

and [h] is the prior. Following the sequential nature of the sampling, the

likelihood becomes

s1; s2; y1; y2jh½ � ¼ s1jh½ � y1js1; h½ � s2js1; y1; h½ � y2js1; s2; y1; h½ �

The selection of the initial sites s1 is completely random and does not

depend on the parameters, and the selection of the second set of points

s2 depends only on s1 and y1 and not the parameters, therefore

s1jh½ � ¼ ½s1� and s2js1; y1; h½ � ¼ ½s2js1; y1�, and thus
hjs1; s2; y1; y2½ � / y1js1; h½ � y2js1; s2; y1; h½ � h½ � ¼ y1; y2js1; s2; h½ � h½ �

This is the usual spatial regression model for the data y1 and y2 that

ignores site selection. Therefore, because site selection depends only on

observed data and not unknown parameters, we can proceed with the

standard statistical methods.

BAYESIAN ANALYSIS

To complete the Bayesianmodel, we specify priors for the hyperparam-

eters. For all models, we assume the detection probability has prior

p � Unif(0, 1) and the elements of b have independent normal priors

with mean 0 and variance 100. For the spatial model, the spatial corre-

lation parameters have log-normal priors g � LN(0, 1) and

q � LN(0, 10). For the cluster random-effects model, the variance

has inverse gamma prior r2 � InvG(0.1, 0.1). We develop specific

MCMC samplers (Supplement 1) to update all parameters in both

models using R (RDevelopment Core Team 2014).We generate 10 000

samples and discard the first 2 000 as burn-in. Convergence is moni-

tored using traces plots of several representative parameters.

Simulation study

DESIGN

In this section, we compare our new method’s ability to esti-

mate the proportion of the spatial domain that is occupied.We

compare two different sampling designs: adaptive cluster sam-

pling (Clus) and simple random sampling (SRS) along with

three different models of analysis: standard occupancy model

(In – for independent) (MacKenzie et al. 2002), shared ran-

dom-effects model (RE) and the spatial occupancymodel (Sp).

We generate data on a 20-by-20 rectangular grid of N = 400

locations. The data are generated from the spatial occupancy

model described above. The true occupancy proportion is

w ¼ PN
l Zl=N where Zl is the occupancy state for cell l and w

is the mean over the N cells in the spatial domain. The true

occupancy proportion is controlled by the parameter b, where
E Vlð Þ ¼ UðbÞ.We set b so that the expected value ofw is either

0�1 or 0�4. The spatial correlation parameters are set to g = 2

and q = 0.5 and the detection probability was set to either

p = 0�25 or 0�75. We ran simulations with w = 0.01, but there

were too few data in the majority of cases with enough detec-

tions (~99% out of 500 in some cases) so we did not report

these results because of this selective bias and subsequent

biased results.

The spatially-adaptive design (Clu) samples n sites in the first

stage and in the second stage the four rook neighbours of the

first-stage sites with at least one occurrence. We simulate data

with n = 20, 50, 100 and 150 initial sites. We compare this with

data collected using a simple random sample (SRS) with the

same total number of sites that were sampled in the adaptive

design (
Pn

i¼1 ki). All methods used J = 5 sampling occasions

© 2015 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society,
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for all sites. For each data set gathered following the adaptive

design, we fit the spatial occupancymodel (Sp) and cluster ran-

dom-effects model (RE) described above, as well as the inde-

pendence model (In) with independent Vij (i.e. the spatial

model with g = 0). For the data gathered following a simple

random sample, we fit both the spatial (Sp) and independent

models (In).

For each combination of b, p and n, we simulated 500 data

sets; data sets with less than 3 occurrences for either sampling

design were discarded (this occurred for less than 10% of data

sets for all scenarios we considered). For each sampling design

and analytic method, we computed the posterior mean and

posterior 90% interval of the occupancy proportion w.
Tables 1-3 give the bias, mean squared error (MSE) and cover-

age forw.

Results

As expected, gathering data using the clustered design yet ana-

lysing the data without regard to the sampling design using the

independence model results in positive bias for w (Table 1).

This occurs because more sampling effort is dedicated to loca-

tions that are likely occupied, leading to overestimation using

naive methods. Accounting for the design using the simple

cluster random-effects model reduces bias considerably, and

full spatial modelling reduces bias further, especially for large n

when the spatial covariance parameters can be estimated reli-

ably. Similar problems are observed with the independence

model with coverage far below the nominal level (Table 2).

The independence model’s poor coverage is likely the result of

both bias and underestimating uncertainty because potential

duplication (spatial dependence) between nearby observations

is ignored. For the spatial model, coverage of 90% intervals is

at least 86�8% for all settings with n > 20.

Mean squared error values indicated that cluster sampling is

advantageous for rare and elusive species when sample sizes,

occurrence and detection rates are low (Table 3). For the case

with true occupancy w = 0.1 and detection p = 0.25, the clus-

ter sample/spatial model approach has smaller MSE (up to

50% reduction) than the simple random sampling designs. In

this case, the cluster random-effects model also provides a sub-

stantial reduction in MSE compared to the simple random

sampling methods and is therefore a viable alternative to the

full spatial model. In fact, with n = 20, the simpler random-

effects model actually has smaller MSE than the full spatial

model. In other cases with either high occupancy (w = 0.4) or

detection (p = 0.75), the simple random sampling method with

spatial analysis give smaller MSE than the adaptive sampling

methods. However, even in these cases, the cluster sampling

method with spatial analysis has comparable bias and cover-

age near the nominal level. Final sample sizes after adaptive

sampling were higher when true occupancy and detection were

both high and in some cases represented ~71% increase in sam-

pling effort (Table S1).

Data example

In addition to simulations, we illustrate our new methods on a

population of plant species, Tamarix ramosissima, from a 1-

km2 study area in the Inner Mongolia region of PR China

(Smith et al. 2012). The Chinese Academy of Forestry counted

all desert shrubs within the study area, and therefore, we

obtained a complete census including the number of stems and

distribution at the time of the study from which we could sub-

sample following the different survey designs (Clu and SRS).

Density of Tamarix was 0�15 m�2 and occupancy was 6% of

10-m 9 10-m grid cells. In addition, we incorporated several

derived habitat variables including elevation, slope, distance to

roads, solar insolation and topographic convergence. These

variables were derived using the Advanced Spaceborne Ther-

mal Emission and Reflection Radiometer (ASTER) Digital

Elevation Model (DEM) from NASA Jet Propulsion labora-

Table 1. Bias (Monte Carlo error) from the simulation study. Data are sampled using either cluster (‘Clu’) or simple random sampling (‘SRS’), and

data are analysed using either spatial (‘Sp’), random-effects (‘RE’), or independent (‘In’)models with J = 5 sampling occasions. The simulations vary

by the expected occupancy proportion (w), detection probability (p) and initial sample size (n)

w p n Clu/Sp Clu/RE Clu/In SRS/Sp SRS/In

0�1 0�25 20 0�184 (0�03) 0�130 (0�02) 0�280 (0�03) 0�214 (0�03) 0�218 (0�03)
50 0�050 (0�01) 0�045 (0�01) 0�130 (0�02) 0�084 (0�01) 0�098 (0�02)
100 0�022 (0�01) 0�020 (0�01) 0�079 (0�01) 0�029 (0�01) 0�051 (0�01)
150 0�011 (0�01) 0�009 (0�01) 0�052 (0�01) 0�019 (0�01) 0�025 (0�01)

0�75 20 0�040 (0�00) �0�016 (0�00) 0�098 (0�01) 0�014 (0�00) 0�014 (0�00)
50 0�013 (0�00) �0�026 (0�00) 0�069 (0�00) 0�000 (0�00) 0�001 (0�00)
100 0�005 (0�00) �0�020 (0�00) 0�051 (0�00) 0�000 (0�00) 0�001 (0�00)
150 0�002 (0�00) �0�013 (0�00) 0�039 (0�00) 0�001 (0�00) 0�002 (0�00)

0�4 0�25 20 0�158 (0�01) 0�104 (0�01) 0�260 (0�01) 0�121 (0�01) 0�134 (0�01)
50 0�032 (0�00) 0�054 (0�01) 0�147 (0�01) 0�022 (0�00) 0�047 (0�01)
100 0�010 (0�00) 0�049 (0�00) 0�102 (0�00) 0�004 (0�00) 0�013 (0�00)
150 0�007 (0�00) 0�049 (0�00) 0�081 (0�00) 0�008 (0�00) 0�013 (0�00)

0�75 20 0�020 (0�00) �0�001 (0�01) 0�122 (0�00) 0�003 (0�00) 0�005 (0�00)
50 0�010 (0�00) 0�022 (0�00) 0�117 (0�00) 0�006 (0�00) 0�006 (0�00)
100 0�008 (0�00) 0�039 (0�01) 0�098 (0�00) �0�001 (0�00) 0�001 (0�00)
150 0�002 (0�00) 0�036 (0�00) 0�078 (0�00) 0�001 (0�00) 0�001 (0�00)

© 2015 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society,
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tory and resampled to a 10 m 9 10 m cell resolution to match

the scale of the species and habitat variables (see

Appendix 17�1 in Smith et al. 2012 formore details).

Taking the occupancy status in the observed data as the

true value of Zl (Fig. 1, top left panel), we simulated data

following the same procedure as in the simulation study. We

subsample the original data using either n = 100, 250 or 500

initial locations for the cluster sampling approach (Clu), and

compare with an equally sized simple random sample (SRS).

This provides the true occurrence state at those locations

wherein we simulate detection/non-detection data to use in

our model comparisons. The detection probability was taken

to be either p = 0�25 or 0�75. For each value of n and p we

generated 500 data sets. The models used to analyse each

simulated data set were the same as those in the simulation

study (Sp, RE, In), except that the covariates in the mean

(Xij) now include DEM-derived habitat variables (elevation,

slope, distance to roads, solar insolation and topographic

convergence). The effect of these habitat variables was gener-

ated from the estimated effect from the original data (Smith

et al. 2012). We used the same priors for the parameters as

in the simulation study. For each fitted model, we computed

bias and MSE of the posterior mean occupancy proportion

w. In addition, to compare accuracy of species distribution

maps, we compute the posterior occupancy probability in

each cell, Ẑl, and the Brier score (Gneiting & Raftery 2007)PN
l¼1 ðẐl � ZlÞ2=N. Predictions with smaller Brier scores are

preferred.

Table 2. Coverage of 90% intervals (Monte Carlo error) from the simulation study. Data are sampled using either cluster (‘Clu’) or simple random

sampling (‘SRS’), and data are analysed using either spatial (‘Sp’), random-effects (‘RE’) or independent (‘In’)models with J = 5 sampling occasions.

The simulations vary by the expected occupancy proportion (w), detection probability (p) and initial sample size (n)

w p n Clu/Sp Clu/RE Clu/In SRS/Sp SRS/In

0�1 0�25 20 0�803 (0�04) 0�855 (0�04) 0�575 (0�05) 0�808 (0�04) 0�793 (0�04)
50 0�864 (0�02) 0�867 (0�02) 0�586 (0�03) 0�883 (0�02) 0�878 (0�02)
100 0�884 (0�02) 0�823 (0�02) 0�568 (0�02) 0�901 (0�02) 0�884 (0�02)
150 0�880 (0�01) 0�831 (0�02) 0�557 (0�02) 0�880 (0�01) 0�880 (0�02)

0�75 20 0�888 (0�02) 0�935 (0�01) 0�547 (0�03) 0�935 (0�01) 0�935 (0�01)
50 0�905 (0�02) 0�789 (0�02) 0�414 (0�02) 0�898 (0�01) 0�902 (0�01)
100 0�880 (0�01) 0�635 (0�02) 0�334 (0�02) 0�870 (0�01) 0�873 (0�01)
150 0�876 (0�02) 0�619 (0�02) 0�298 (0�02) 0�839 (0�02) 0�829 (0�02)

0�4 0�25 20 0�798 (0�02) 0�838 (0�02) 0�525 (0�02) 0�848 (0�02) 0�826 (0�02)
50 0�880 (0�01) 0�832 (0�02) 0�460 (0�02) 0�896 (0�01) 0�850 (0�02)
100 0�870 (0�02) 0�780 (0�02) 0�364 (0�02) 0�904 (0�01) 0�894 (0�01)
150 0�872 (0�02) 0�717 (0�02) 0�332 (0�03) 0�886 (0�02) 0�857 (0�02)

0�75 20 0�868 (0�02) 0�854 (0�02) 0�424 (0�02) 0�896 (0�01) 0�914 (0�01)
50 0�886 (0�02) 0�814 (0�02) 0�150 (0�02) 0�906 (0�01) 0�901 (0�01)
100 0�880 (0�02) 0�733 (0�02) 0�027 (0�02) 0�907 (0�02) 0�933 (0�02)
150 0�902 (0�02) 0�505 (0�03) 0�010 (0�01) 0�875 (0�02) 0�854 (0�02)

Table 3. Mean squared error (Monte Carlo error) from the simulation study. Data are sampled using either cluster (‘Clu’) or simple random sam-

pling (“SRS”), and data are analysed using either spatial (‘Sp’), random-effects (‘RE’) or independent (‘In’) models with J = 5 sampling occasions.

The simulations vary by the expected occupancy proportion (w), detection probability (p) and initial sample size (n)

w p n Clu/Sp Clu/RE Clu/In SRS/Sp SRS/In

0�1 0�25 20 0�081 (0�02) 0�048 (0�01) 0�139 (0�02) 0�101 (0�02) 0�105 (0�02)
50 0�015 (0�01) 0�018 (0�01) 0�040 (0�01) 0�039 (0�01) 0�046 (0�01)
100 0�006 (0�01) 0�009 (0�01) 0�019 (0�01) 0�010 (0�01) 0�023 (0�01)
150 0�003 (0�00) 0�003 (0�00) 0�008 (0�01) 0�008 (0�00) 0�009 (0�01)

0�75 20 0�005 (0�00) 0�003 (0�00) 0�016 (0�00) 0�003 (0�00) 0�003 (0�00)
50 0�001 (0�00) 0�002 (0�00) 0�007 (0�00) 0�001 (0�00) 0�001 (0�00)
100 0�000 (0�00) 0�001 (0�00) 0�004 (0�00) 0�000 (0�00) 0�001 (0�00)
150 0�000 (0�00) 0�000 (0�00) 0�002 (0�00) 0�000 (0�00) 0�000 (0�00)

0�4 0�25 20 0�068 (0�00) 0�042 (0�00) 0�109 (0�01) 0�052 (0�00) 0�057 (0�00)
50 0�010 (0�00) 0�016 (0�00) 0�036 (0�00) 0�007 (0�00) 0�017 (0�00)
100 0�003 (0�00) 0�008 (0�00) 0�014 (0�00) 0�002 (0�00) 0�003 (0�00)
150 0�002 (0�00) 0�006 (0�00) 0�009 (0�00) 0�001 (0�00) 0�002 (0�00)

0�75 20 0�008 (0�00) 0�016 (0�00) 0�023 (0�00) 0�004 (0�00) 0�004 (0�00)
50 0�002 (0�00) 0�007 (0�00) 0�016 (0�00) 0�001 (0�00) 0�002 (0�00)
100 0�001 (0�00) 0�004 (0�00) 0�011 (0�00) 0�000 (0�00) 0�000 (0�00)
150 0�000 (0�00) 0�002 (0�00) 0�006 (0�00) 0�000 (0�00) 0�000 (0�00)

© 2015 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society,
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The results (Table 4) mirror the simulation study

(Tables 1-3). Fitting the independence model to the clustered

data results in a positive bias, and the spatial model with clus-

ter-sampled data has smaller bias and MSE than the spatial

model with randomly sampled data. As expected, predictions

from the spatial models produce smaller Brier scores than non-

spatial models, and on average, the spatial model has smaller

Brier score when driven by cluster-sampled data rather than

randomly sampled data.

We plotted the posterior distribution of occupancy proba-

bilities Ẑl (Pr(Z = 1|y)) for one simulated data set with

n = 250 and p = 0�25 (Fig. 1, panels 2-4). Comparing the spa-

tial models with cluster and random sampling, the data gener-

ated with cluster sampling leads to a more precise distribution

map, especially in the south-east, due to the additional samples

in occupied regions. In particular, the posterior occupancy

probabilities are as high as 0�85 for the cluster-sampled data set

compared to a maximum of 0�45 for the randomly sampled

data set. This leads to overall improvement in the Brier score.

Final sample sizes after adaptive sampling never exceeded

12%additional sampling effort (Table S1).

Discussion

The conservation and management of spatially clustered spe-

cies is one of the most daunting challenges natural resource

managers and ecologists face. It is important that methods are

developed that permit reliable inference for these unique sce-

narios.We have developed an approach that augments the tra-

ditional single-season occupancy design to leverage

information from adjacent sites when a known detection has

occurred. We have provided two models that integrate adap-

tive cluster sampling into an occupancy estimation framework.

(a) (b)

(c) (d)

Fig. 1. True occupancy status for the plant

Tamarix ramosissima from the Inner Mongo-

lia region of China, and posterior mean occu-

pancy probability at non-sampled sites for

various designs and analysis methods for one

data set (sampling locations are black) with

n = 250 and p = 0�25.

Table 4. Bias and MSE for overall occupancy (w) and the Brier score

for spatial prediction forTamarix ramosissima. Data are sampled using

either cluster (‘Clu’) or simple random sampling (‘SRS’), and data are

analysed using either spatial (‘Sp’), random-effects (‘RE’) or indepen-

dent (‘In’) models with J = 5 sampling occasions. Data generation var-

ies by detection probability (p) and initial sample size (n)

n Clu/Sp Clu/RE Clu/In SRS/Sp SRS/In

BIAS 100 0�006 �0�006 0�032 0�010 0�016
P = 0�25 250 0�007 �0�008 0�036 0�010 0�012

500 0�002 �0�009 0�040 0�011 0�013
P = 0�75 100 0�000 �0�012 0�026 0�013 0�016

250 0�001 �0�009 0�041 0�007 0�010
500 �0�001 �0�008 0�047 0�008 0�010

MSE 100 0�000 0�000 0�003 0�001 0�001
P = 0�25 250 0�000 0�000 0�002 0�000 0�000

500 0�000 0�000 0�002 0�000 0�000
P = 0�75 100 0�000 0�000 0�002 0�000 0�000

250 0�000 0�000 0�002 0�000 0�000
500 0�000 0�000 0�002 0�000 0�000

BR 100 0�028 0�028 0�035 0�030 0�030
P = 0�25 250 0�027 0�028 0�037 0�026 0�028

500 0�023 0�027 0�036 0�026 0�029
P = 0�75 100 0�028 0�028 0�035 0�028 0�029

250 0�025 0�028 0�037 0�025 0�028
500 0�022 0�027 0�036 0�024 0�028

© 2015 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society,
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Our simulations show a marked improvement in confidence

interval coverage for the new models combined with cluster

sampling compared to simple random sampling and tradi-

tional occupancy models most notably when detection proba-

bility is low and when there is spatial correlation in occupancy.

Accounting for the design using the simple cluster random-

effects model reduces bias considerably, and full spatial

modelling reduces bias further, especially for large n when the

spatial covariance parameters can be estimated reliably.

Several other authors have explored the use of different

survey designs for occupancy-based studies. MacKenzie &

Royle (2005) explored two common sampling designs and

their influence on estimator performance. Double sampling,

where repeated surveys are conducted at a subset of sites

only, was found to have little advantage over the traditional

approach while removal sampling, where surveying of a site

stops once the species is detected or J surveys have been con-

ducted, was found to be more efficient in terms of obtaining

a smaller standard error for estimating occupancy. MacKen-

zie & Royle (2005) went on further to say that this gain in

efficiency for removal sampling was only realized when a

greater maximum number of visits to a particular site is con-

ducted. This suggests that the use of these designs is not

always warranted except under specific circumstances. We

found similar results with our model, and thus, the use of

adaptive cluster sampling showed very little improvement in

RMSE except when detection probability was low and the

initial sample size was low.

Our results suggest that our models may only be useful

under certain conditions that relate to specific characteristics

of the population. This is not surprising as the benefits of tradi-

tional adaptive sampling are only realized for very specific cir-

cumstances as well. Several authors have shown that the gain

in efficiency for adaptive cluster sampling depends on many

factors including the condition to adapt, the number of sites

and the aggregation and distribution of the population (Smith,

Conroy & Brakhage 1995; Thompson & Seber 1996). Smith,

Conroy & Brakhage (1995) showed that for adaptive cluster

sampling to bemore efficient than simple random sampling the

final sample size should not be much larger than the initial

sample size. In addition Thompson & Seber (1996) identified a

threshold for the initial sample size for which the modified

Horvitz-Thompson estimator was more efficient than simple

random sampling for binary data (n > 50).

Our simulations also support many of the previous findings

from the adaptive sampling literature. For example, adaptive

cluster sampling may seem daunting for the field biologist

when faced with the reality that the sample size is random,

which could be a logistical nightmare. This is a common prob-

lem for adaptive cluster sampling and has led other authors to

develop approaches that provide specific stopping rules or

other ways to define a fixed sample size (Christman & Lan

1998, 2001; Rocco 2003). These variations in adaptive sam-

pling may be useful to consider in such cases. This problem is

diluted slightly by the argument that sampling adjacent sites in

adaptive cluster sampling can be more economical and logisti-

cally more feasibly than complete simple random sampling.

This has been suggested by other authors (Thompson & Seber

1996).

It is important to note that we do see a small decline in inter-

val coverage with an increase in initial sample size when true

occurrence is low. This is most likely due to the fact that w cor-

responds to an estimand of a finite population and the variance

of the model-based estimators is not constructed to decline as

the proportion of units selected in the sample increases. An

alternative approach would be to develop estimators that con-

dition on the event that at least one of the sample units con-

tained the species, as described by Dupuis, Bled & Joachim

(2011).

Although Thompson & Seber (1996) found little evidence of

improved adaptive sampling estimator performance compared

to simple random sampling for binary data, this should not

impede the use of such a design with occupancy estimation.

The findings of Thompson & Seber (1996) suggest that there is

no gain in precision of the adaptive cluster sampling (ACS)

estimator, but one benefit is the increase in the number of sites

sampled thus increasing the likelihood of sampling more indi-

viduals. This gain in the likelihood of observing a particular

species has been noted by several other authors as well

(Thompson 2004; Salehi & Brown 2010) and can play a critical

role in some study objectives when finding a species is equally,

if not, more important than estimation. In addition, we found

such a stark improvement in interval coverage with minimal

variation in model performance over the 500 trials for each

simulation it suggests there is a clear advantage in performance

compared to simple random sampling.

Here, we have focused solely on occupancy-type data, but

we believe that our model can be easily extended. Occupancy

estimation has seen many variations as needed to accommo-

date different objectives and constraints for ecological studies.

We believe that many of these same approaches could be easily

integrated into our model. For example, the use of auxiliary

information collected at each site (e.g. counts of individuals;

Royle & Nichols 2003; Royle 2004) could easily be integrated

into our model by focusing specifically on abundance instead

of occupancy. This would require a different state model in

which abundance was directly modelled instead of occupancy

or a model that explicitly relied on the occupancy–abundance
relationship (Royle&Nichols 2003; Conroy et al. 2008). There

already exists a wide variety of occupancy-based modelling

approaches focused on modelling spatial variation in abun-

dance that could be suggested (Dorazio, Jelks & Jordan 2005;

Royle et al. 2007; Webster, Pollock & Simons 2008; Post van

der Burg et al. 2011; Dorazio 2014). As MacKenzie & Royle

(2005) found, a removal-based approach may be useful to

reduce the logistical effort required to conduct repeat visits

while still obtaining reasonable estimates of occupancy. For

the cluster design, this may be even more advantageous

because sampling adjacent sites and conducting repeat visits

can be logistically taxing. Thus, a removal-type design could

still provide the benefits of augmenting the design, but would

reduce the overall effort.

We envision other areas of expansion that should be investi-

gated as well. As noted in the adaptive sampling literature,

© 2015 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society,
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changing the definition of the condition to adapt (trigger) can

provide valuable changes in estimation and inference (see over-

view by Turk & Borkowski 2005). We imagine many possible

definitions for the trigger in occupancy-based studies which

would ultimately depend on the overall objectives of the study.

For example, we can conceive of a situation where the use of

auxiliary information (e.g. counts of individuals) could be used

as the trigger. A second suggestion is to use a combination of

species or an index ofmultiple species (i.e. measure of diversity)

as the trigger for adaptation especially if interest is in commu-

nity composition or species richness. A separate area of expan-

sion involves the exploration of various neighbourhood

structures. Christman (1996) found physically contiguous

neighbourhoods to be most efficient for classical adaptive sam-

pling and this may be relevant as well. Additionally, we believe

these models could be valuable in non-adaptive sampling

approaches also. For example, these types ofmodelsmaywork

well when there is correlation inherent in the design such as

along a transect (similar to Hines et al. 2010) and SRS may

give misleading results unless the correlated design is incorpo-

rated.

Although the incorporation of model-based and design-

based approaches is not new, we believe our approach is

unique and potentially useful for a variety of studies inter-

ested in patchily distributed, clustered or rare species exhibit-

ing spatial variation. This model builds on both the strength

of occupancy modelling and adaptive sampling and performs

at least as well, and often better, than occupancy modelling

alone. In addition, it benefits from incorporating observer

behaviour by allowing for extra effort to be included in areas

with known detections while permitting statistically rigorous

estimates of occupancy and detection probability. We see the

continuation of research focusing on integrating sample

design and data collection into the modelling framework as a

much needed and critical component to rare species conserva-

tion and management. Approaches that allow for the flexibil-

ity of combining designs and modelling can provide a critical

and informative step in conserving and managing rare

species.
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